

Heat

A transfer of energy (from a warmer to a colder object).
Heat is measured in joules (J)

Temperature

A measure of the average kinetic energy contained in the motion of particles. Temperature is measured in degrees Celsius (${ }^{\circ} \mathrm{C}$) or in Kelvin (K)

Heat (energy transferred to or from a substance) is a function of three variables: The mass of the substance, the type of substance being heated or cooled, and the __ change in temperature __ of the substance.

$$
\text { Heat formula: } \quad Q=m c \Delta \mathrm{~T}
$$

$$
\text { Specific Heat Capacity }\left(\frac{\mathrm{J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)
$$

('c' Takes into account what substance is being heated or cooled)
$Q=m c \Delta \mathrm{~T}$

Specific heat capacity (c) is a ___characteristic property of a substance that describes how much ___ energy _ per unit mass is needed to raise the temperature of that substance by $1^{\circ} \mathrm{C}$ or by $\quad 1 \mathrm{~K}$

Specific Heat Capacity of Water:

$$
c_{\text {water }}=4.19 \frac{\mathrm{~J}}{g^{\circ} \mathrm{C}}
$$

$$
Q=m c \Delta \mathrm{~T}
$$

Ex I: A 50.0 g sample of water is heated from an initial temperature of $24.0^{\circ} \mathrm{C}$ to its boiling point.
How much heat was transferred into the water?

$$
\begin{gathered}
Q=m c \Delta \mathrm{~T} \\
\mathrm{Q}=(50.0 \mathrm{~g})\left(4.19 \frac{\mathrm{~J}}{g^{\circ} \mathrm{C}}\right)\left(100.0^{\circ} \mathrm{C}-24.0^{\circ} \mathrm{C}\right) \\
\mathrm{Q}=(50.0 \mathrm{~g})\left(4.19 \frac{\mathrm{~J}}{g^{\circ} \mathrm{C}}\right)\left(76.0^{\circ} \mathrm{C}\right) \\
\mathrm{Q}=15900 \mathrm{~J}
\end{gathered}
$$

$$
\Delta \mathrm{T}=\mathrm{T}_{f}-\mathrm{T}_{i}
$$

$$
Q=m c \Delta \mathrm{~T}
$$

Ex II: A 250 mL sample of water has an initial temperature as shown on the thermometer to the right.
If 56.0 kJ of heat energy is transferred into this water, what will be the final temperature of the water?

$$
\begin{aligned}
Q & =m c \Delta \mathrm{~T} \\
56000 \mathrm{~J} & =(250.0 \mathrm{~g})\left(4.19 \frac{\mathrm{~J}}{g^{\circ} \mathrm{C}}\right)\left(\mathrm{T}_{f}-17.5^{\circ} \mathrm{C}\right) \\
53.46^{\circ} \mathrm{C} & =\mathrm{T}_{f}-17.5^{\circ} \mathrm{C} \\
\mathrm{~T}_{f} & =71.0^{\circ} \mathrm{C}
\end{aligned}
$$

$$
Q=m c \Delta \mathrm{~T}
$$

Ex III: A 40.0 mL sample of vegetable oil requires 621 J of heat to increase its temperature by $10.0^{\circ} \mathrm{C}$. Vegetable oil has a density of $0.93 \mathrm{~g} / \mathrm{mL}$. Determine the specific heat capacity of vegetable oil.

We need the mass of the oil:

$$
\begin{aligned}
\rho & =\frac{m}{V} \\
0.93 \mathrm{~g} / \mathrm{mL} & =\frac{m}{40.0 \mathrm{~mL}} \\
m & =37.2 \mathrm{~g}
\end{aligned}
$$

$$
Q=m c \Delta \mathrm{~T}
$$

$$
621 \mathrm{~J}=(37.2 \mathrm{~g}) c\left(10.0^{\circ} \mathrm{C}\right)
$$

$$
c=1.67 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}
$$

Workbook (Transformations and Energy)

Pages ??

