pH scale

power of Hydrogen

pH

pH

pH

Scale generally runs from 0 - 14

Scale generally runs from 0 - 14

In pure water a few of the water, H_2O , molecules will split up into hydrogen, H^+ , and hydroxide, OH^- , ions.

$$H_2O \rightarrow H^+ + OH^-$$

In pure water the number of \mathbf{H}^{\dagger} and $\mathbf{OH}^{\overline{}}$ ions are equal.

 H^{\dagger} and OH^{-} are balanced.

This corresponds to a pH of 7.

pH7 = Neutral

In pure water the numb

 $\overrightarrow{H}^{\dagger}$ and $\overrightarrow{OH}^{}$ ions are equivalent Neutral

 H^{\dagger} and OH^{-} are balanced.

This corresponds to a pH of 7.

pH7 = Neutral

If an acid is added to the water, the quantity of $\boldsymbol{H}^{\intercal}$ will increase.

Acids release H^{\dagger}

 $\begin{array}{c} \text{more} \ H^{\intercal} \\ \text{pH value drops} \end{array}$

If an acid is added to the water, the quantity of H^{+} will increase.

Acids release H^{\dagger}

more H^T pH value drops

Acids 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

- The stronger the acid, the lower the pH.
 - An acid with pH = 5 is 10X stronger than pH = 6
 - An acid with pH = 3 is 10X stronger than pH = 4
 - An acid with pH = 2 is 100X stronger than pH = 4

If a base is added to the water, the quantity of \mathbf{OH}^{T} will increase.

Bases release OH

less H⁺ pH value rises

If a base is added to the water, the quantity of \mathbf{OH}^{T} will increase.

Bases release OH

pH value rises

The stronger the base, the higher the pH.

Dissolving a salt in the water (normally) does not affect the balance between \mathbf{H}^+ and \mathbf{OH}^- ions.

Saline (salt) solutions are usually neutral: pH = 7

