pH scale

power of Hydrogen
pH
pH
Scale used to measure the concentration of hydrogen ions, H^{+}, in a solution.

Scale used to measure the concentration of hydrogen ions, H^{+}, in a solution.

Scale generally runs from 0-14
pH
$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Scale generally runs from 0-14

In pure water a few of the water, $\mathrm{H}_{2} \mathrm{O}$, molecules will split up into hydrogen, H^{+}, and hydroxide, OH^{-}, ions.
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$

In pure water the number of H^{+}and OH^{-}ions are equal. H^{+}and OH^{-}are balanced.

This corresponds to a pH of 7 .
pH $7=$ Neutral
H^{+}
OH^{-}
OH^{-}
pH $\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 14\end{array}$

If an acid is added to the water, the quantity of H^{+}will increase.

Acids release H^{+}

more H^{+}
pH value drops

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

If an acid is added to the water, the quantity of H^{+}will increase.

Acids release H^{+}

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

* The stronger the acid, the lower the pH.
- An acid with $\mathrm{pH}=5$ is 10 X stronger than $\mathrm{pH}=6$
- An acid with $\mathrm{pH}=3$ is 10 X stronger than $\mathrm{pH}=4$
- An acid with $\mathrm{pH}=2$ is 100 X stronger than $\mathrm{pH}=4$

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

If a base is added to the water, the quantity of OH^{-}will increase.

Bases release OH^{-}

less H^{+}
pH value rises

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

If a base is added to the water, the quantity of OH^{-}will increase.

Bases release OH^{-}

* The stronger the base, the higher the pH .

less H^{+}
pH value rises

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Dissolving a salt in the water (normally) does not affect the balance between \mathbf{H}^{+}and $\mathbf{O H}^{-}$ions.

Saline (salt) solutions are usually neutral: $\mathrm{pH}=7$

