Periodic Table Review

Oxidation

How many electrons an atom needs to gain or lose to achieve the maximum number of electrons in its outer most shell.

✤Groups IA to IIIA ____

✤Groups VA to VIIA ____

✤Group VIIIA

≻<u>Octet Rule</u>

An atom with 8 electrons in its outer most shell (energy level) is chemically stable and unreactive.

Separate metals and nonmetals

Transition or D-Block Metals

Metals in the middleCan vary in oxidation number

Polyatomic ions

- ➢ OH⁻ hydroxide
- $> NO_3$ nitrate
- > HCO₃⁻ hydrogen carbonate
- $> CO_3^2$ carbonate
- > SO₄²⁻ sulphate
- $\geq \overline{\mathrm{PO}_4^{3-}}$ phosphate
- $> NH_4^+$ ammonium

➢ Diatomic gases

 \searrow II2 \Rightarrow haveH2 \Rightarrow noN2 \Rightarrow brightBr2 \Rightarrow orO2 \Rightarrow cleverCl2 \Rightarrow friends.F2

> Other chemical names often seen in workbook:

- metal + non-metal
- \succ held together by opposite charges

≻<u>Covalent</u>

everything else (for the purposes of this course)sharing of electrons

<u>Cross-over Rule for Writing Chemical Formulas</u> <u>Ionic Compounds</u>

Step	Example 1	Example 2
Write symbols - place the metal first	Mg O	Al S
Write oxidation #s as superscripts		
Cross over the superscripts		
Divide subscripts by greatest common factor		
Drop any subscript that is a 1		