\qquad

Molar Fusion of Ice

-Qhot ("hot" water)		- $+Q_{\text {cold }}$ (cold ice)
$\mathrm{m}_{\text {hot }}=$ You decide		$\mathrm{m}_{\text {cold }}=$ to be determined in procedure
$\mathrm{CH}_{\text {Hot }}=$ specific heat capacity of water		$\mathrm{C}_{\text {cold }}$
Tih $=$ room temp		$\mathrm{T}_{\mathrm{ic}}=$
$\mathrm{T}_{\mathrm{f}}=$		$\mathrm{T}_{\mathrm{f}}=$
$-Q_{\text {hot }}=+Q_{\text {cold }}$		
$-m_{c} c_{c} \Delta T_{c}=+m \in \Delta T$		
$-m_{c} c_{c} \Delta T_{c}=+n \Delta H$ $n \rightarrow$ mel	Since you cannot determine the amount of heat abs orbed by the ice cubes by using ΔT, you must use $Q=n \times \Delta H$, where n is the moles of ice and ΔH is the molar heat of ice. How would you calculate the number of moles of ice MELTED if you don't have a balance to measure the ice? Remember the density of $\mathrm{H}_{2} \mathrm{O}$ is $\rho=1.0 \mathrm{~g} / \mathrm{mL}$	

$\Delta \mathrm{H} \rightarrow$ molar heat (Amount of energy needed to raise 1 mol of substance 1 Kelvin)
Accepted value of $\Delta H_{\text {ice }}=6.01 \mathrm{~kJ} / \mathrm{mol}$

Materials needed:

- 3 graduated cylinders ($25 \mathrm{~mL}, 50 \mathrm{~mL}, 75 \mathrm{~mL}$)
- Calorimeter
- 2 thermometers
- Pipette
- Tap water beaker
- Ice cubes
- Room temperature water

