Molar Fusion of Ice

-Q _{hot} ("hot" water)	+ Q _{cold} (cold ice)
m _{hot} = You decide	m _{cold} = to be determined in procedure
C _{Hot} = specific heat capacity of water	C _{cold}
T _{ih} = room temp	T _{ic} =
T _f =	T _f =

- Q_{hot} = + Q_{cold}
- $-m_c c_c \Delta T_c = +m_c \Delta T$

 $-m_c c_c \Delta T_c = +n \Delta H$

 $n \rightarrow moles$

Since you cannot determine the amount of heat absorbed by the ice	
cubes by using ΔT , you must use Q = n x ΔH , where n is the moles of	
ice and ΔH is the molar heat of ice. How would you calculate the	
number of moles of ice MELTED if you don't have a balance to	
measure the ice? Remember the density of H ₂ O is ρ = 1.0 g/ mL	

 $\Delta H \rightarrow$ molar heat (Amount of energy needed to raise 1 mol of substance 1 Kelvin)

Accepted value of ΔH_{ice} = 6.01 kJ / mol

Materials needed:

- 3 graduated cylinders (25 mL, 50 mL, 75 mL)
- Calorimeter
- 2 thermometers
- Pipette
- Tap water beaker
- Ice cubes
- Room temperature water