\% Concentration

Concentration (\% m/v)

(\% mass per volume)

$$
\mathrm{C}=\underset{\substack{\uparrow \\(\operatorname{Per~} 100) \\(\text { Volume in } \mathrm{mL})}}{18 \% \mathrm{~m} / \mathrm{V}} \quad \Rightarrow \quad \mathrm{C}=\frac{18 \mathrm{~g}}{100 \mathrm{~mL}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{v}$) (\% mass per volume)

Example I: What ameunt of solute is required to make 350 mL of an $18 \% \mathrm{~m} / \mathrm{v}$ solution?

$$
C=\frac{m}{v}
$$

Concentration ($\% \mathrm{~m} / \mathrm{v}$) (\% mass per volume)

Example I: What ameunt of solute is required to make 350 mL of an $18 \% \mathrm{~m} / \mathrm{v}$ solution?

$$
\frac{18 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{\mathrm{m}}{\mathrm{~V}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{v}$) (\% mass per volume)

Example I: What ameunt of solute is required to make 350 mL of an $18 \% \mathrm{~m} / \mathrm{v}$ solution?

$$
\begin{aligned}
\frac{18 \mathrm{~g}}{100 \mathrm{~mL}} & =\frac{\mathrm{m}}{350 \mathrm{~mL}} \\
100 \mathrm{~m} & =6300 \\
\mathrm{~m} & =63 \mathrm{~g} \text { of solute }
\end{aligned}
$$

Concentration ($\% \mathrm{~m} / \mathrm{v}$) (\% mass per volume)

Example II: What volume of solution will contain 60 g of solute, if the concentration is $15 \% \mathrm{~m} / \mathrm{v}$?

$$
C=\frac{m}{v}
$$

Concentration (\% m/v) (\% mass per volume)

Example II: What volume of solution will contain 60 g of solute, if the concentration is $15 \% \mathrm{~m} / \mathrm{v}$?

$$
\frac{15 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{\mathrm{m}}{\mathrm{~V}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{v}$) (\% mass per volume)

Example II: What volume of solution will contain 60 g of solute, if the concentration is $15 \% \mathrm{~m} / \mathrm{v}$?

$$
\frac{15 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{60 \mathrm{~g}}{\mathrm{~V}}
$$

$15 \mathrm{~V}=6000$

$$
\mathrm{v}=400 \mathrm{~mL} \text { of solution }
$$

Concentration (\% v/v)

(\% by volume)

$$
\mathrm{C}=\underset{\substack{\text { (Per } 100)}}{30 \% \mathrm{v} / \mathrm{v}} \quad \Rightarrow \quad \mathrm{C}=\frac{30 \mathrm{~mL} \text { (solute) }}{100 \mathrm{~mL} \text { (solution) }}
$$

Concentration (\% v/v) (\% by volume)

Example III: What amount of solute is required to make 600 mL of a 30% (v/v) solution?

$$
\mathrm{C}=\frac{\mathrm{V}_{\text {solute }}}{\mathrm{v}_{\text {solution }}}
$$

Concentration (\% v/v) (\% by volume)

Example III: What ameunt of solute is required to make 600 mL of a 30% (v/v) solution?

$$
\frac{30 \mathrm{~mL}}{100 \mathrm{~mL}}=\frac{\mathrm{V}_{\text {solute }}}{\mathrm{V}_{\text {solution }}}
$$

Concentration (\% v/v) (\% by volume)

Example III: What ameunt of solute is required to make 600 mL of a 30% (v/v) solution?

$$
\frac{30 \mathrm{~mL}}{100 \mathrm{~mL}}=\frac{\mathrm{V}_{\text {solute }}}{600 \mathrm{~mL}}
$$

$$
100 \mathrm{v}=18000
$$

$\mathrm{V}=180 \mathrm{~mL}$ of solute

Concentration ($\% \mathrm{~m} / \mathrm{m}$)

(\% by mass)

$\mathrm{C}=6 \% \mathrm{~m} / \mathrm{m} \quad \Rightarrow$ $C=\frac{6 \mathrm{~g} \text { (solute) }}{100 \mathrm{~g} \text { (solution) }}$
 (Per 100)

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example IV: What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) of a 200 g solution that contain 50 g of solute?

$$
\mathrm{C}=\frac{\mathrm{m}_{\text {solute }}}{\mathrm{m}_{\text {solution }}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example IV: What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) of 200 g solution that contain 50 g of solute?

$$
\mathrm{C}=\frac{50 \mathrm{~g}}{\mathrm{~m}_{\text {solution }}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example IV: What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) of a 200 g solution that contain 50 g of solute?

$$
\begin{aligned}
& C=\frac{50 \mathrm{~g}}{200 \mathrm{~g}} \\
& \mathrm{C}=25 \% \mathrm{~m} / \mathrm{m}
\end{aligned}
$$

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example V : What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) if 150 g of solute is dissolved into 600 g of solvent?

$$
\mathrm{C}=\frac{\mathrm{m}_{\text {solute }}}{\mathrm{m}_{\text {solution }}}
$$

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example V: What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) if 150 g of solute is dissolved into 600 g of solvent?

Solution $=$ Solute + Solvent

Concentration ($\% \mathrm{~m} / \mathrm{m}$) (\% by mass)

Example V: What will be the concentration (in $\% \mathrm{~m} / \mathrm{m}$) if 150 g of solute is dissolved into 600 g of solvent?

$$
\begin{aligned}
& \mathrm{C}=\frac{150 \mathrm{~g}}{750 \mathrm{~g}} \\
& \mathrm{C}=20 \% \mathrm{~m} / \mathrm{m}
\end{aligned}
$$

