Concentration (ppm)

Solutions

Concentration (ppm)

Solutiomesworksheet

$$
p p m=\frac{m g}{k g} \text { or } \frac{m g}{L}
$$

1) 50 mg of solute is dissolved in 2 kg of solution. What is the concentration in ppm ?

$$
p p m=\frac{m g}{k g} \text { or } \frac{m g}{L}
$$

$$
\begin{aligned}
& C=\frac{50 \mathrm{mg}}{2 \mathrm{~kg}} \\
& C=25 \mathrm{ppm}
\end{aligned}
$$

2) 15 L of solution contains 120 mg of solute. What is the concentration in ppm ?

$$
p p m=\frac{m g}{k g} \text { or }\left(\frac{m g}{L}\right)
$$

$$
C=\frac{120 \mathrm{mg}}{15 \mathrm{~L}}
$$

$$
C=8 \mathrm{ppm}
$$

3) The concentration of a solute in 3 kg of solution is 21 ppm . Determine the mass of the solute.

$$
p p m=\frac{m g}{\mathrm{~kg}} \text { or } \frac{\mathrm{mg}}{\mathrm{~L}}
$$

$$
\begin{aligned}
\frac{21 \mathrm{mg}}{1 \mathrm{~kg}} & =\frac{x}{3 \mathrm{~kg}} \\
x & =63 \mathrm{mg}
\end{aligned}
$$

4) What mass of solute present in 0.5 L of solution would yield a concentration of 20 ppm ?

$$
p p m=\frac{m g}{k g} \text { or }\left(\frac{m g}{L}\right)
$$

$$
\begin{aligned}
\frac{20 \mathrm{mg}}{1 \mathrm{~L}} & =\frac{x}{0.5 \mathrm{~L}} \\
x & =10 \mathrm{mg}
\end{aligned}
$$

5) The concentration of chlorine in a sample of tap water is 0.3 ppm . What amount of chlorine would there be in a 60 mL sample of this tap water?

$$
p p m=\frac{m g}{k g} \text { or }\left(\frac{m g}{L}\right)
$$

$$
60 \mathrm{~mL}=0.06 \mathrm{~L}
$$

$$
\begin{aligned}
\frac{0.3 \mathrm{mg}}{1 \mathrm{~L}} & =\frac{x}{0.06 \mathrm{~L}} \\
x & =0.018 \mathrm{mg}
\end{aligned}
$$

6) If the concentration of a solute is 60 ppm , what amount of solution would contain 30 mg of the solute? $\quad \operatorname{ppm}=\frac{\mathrm{mg}}{\mathrm{kg}}$ or $\frac{\mathrm{mg}}{\mathrm{L}}$

$$
\begin{aligned}
\frac{60 \mathrm{mg}}{1 \mathrm{~kg}} & =\frac{30 \mathrm{mg}}{x} \\
(60)(x) & =(1)(30) \\
60 x & =30 \\
x & =0.5 \mathrm{~kg}
\end{aligned}
$$

7) 0.15 g of potassium chloride, KCl , is dissolved in 500 mL of water. Determine the concentration of this solution ...
(a) in $\mathrm{g} / \mathrm{L}: \quad C=\frac{0.15 \mathrm{~g}}{0.5 \mathrm{~L}}=0.3 \mathrm{~g} / \mathrm{L}$
(b) in $\% \mathrm{~m} / \mathrm{v}: C=\frac{0.15 \mathrm{~g}}{500 \mathrm{~mL}} \times 100 \%=0.03 \%$
(c) in ppm: $C=\frac{150 \mathrm{mg}}{0.5 \mathrm{~L}}=300 \mathrm{ppm}$
8) If you eat a 3 oz . can $(90 \mathrm{~g})$ of tuna that contains 0.20 ppm Hg (mercury), how much mercury did you ingest?

$$
90 \mathrm{~g}=0.09 \mathrm{~kg}
$$

$$
\begin{aligned}
\frac{0.2 \mathrm{mg}}{1 \mathrm{~kg}} & =\frac{x}{0.09 \mathrm{~kg}} \\
x & =0.018 \mathrm{mg}
\end{aligned}
$$

9) A 30000 litre saltwater swimming pool contains 38 kg of dissolved salt.

$$
p p m=\frac{m g}{\mathrm{~kg}}
$$

(a) Determine the concentration of salt, in ppm, in this swimming pool.

$$
38 \mathrm{~kg}=38000000 \mathrm{mg}
$$

$$
C=\frac{38000000 \mathrm{mg}}{30000 \mathrm{~L}}=1267 \mathrm{ppm}
$$

9) A 30000 litre saltwater swimming pool contains 38 kg of dissolved salt.

$$
p p m=\frac{m g}{\mathrm{~kg}}
$$

(b) The salt concentration in a saltwater pool is recommended to be between 2600 ppm and 3500 ppm . How much more salt must be added to the pool water in the above example in order to obtain a salt concentration of 3200 ppm ?

$\frac{3200 \mathrm{mg}}{1 \mathrm{~L}}$	$=\frac{x}{30000 \mathrm{~L}}$
x	$=96000000 \mathrm{mg}$
x	$=96 \mathrm{~kg}$

- Already have 38 kg of salt in the pool.
- Need to add ... 58 kg of salt.

9) A 30000 litre saltwater swimming pool contains 38 kg of dissolved salt.

- Need to add 58 kg of salt to the pool.

$$
p p m=\frac{m g}{k g} \text { or } \frac{m g}{L}
$$

(c) The salt comes in 20 kg bags. How many bags of salt need to be purchased?

9) A 30000 litre saltwater swimming pool contains 38 kg of dissolved salt.

- Need to add 78 kg of salt to the pool.

$$
p p m=\frac{m g}{k g} \text { or } \frac{m g}{L}
$$

(c) The salt comes in 20 kg bags. How many bags of salt need to be purchased?

10) Seawater contains $3.9 \times 10^{-6} \mathrm{ppm}$ of dissolved gold (Au).

What volume of seawater would contain 1.0 g of gold?

$$
p p m=\frac{m g}{k g} \quad \text { or } \frac{m g}{L}
$$

$$
1 \mathrm{~g}=1000 \mathrm{mg}
$$

$$
\frac{3.9 \times 10^{-6} \mathrm{mg}}{1 \mathrm{~L}}=\frac{1000 \mathrm{mg}}{x} \quad \text { or } \quad \frac{0.0000039 \mathrm{mg}}{1 \mathrm{~L}}=\frac{1000 \mathrm{mg}}{x}
$$

$$
3.9 \times 10^{-6} x=1000
$$

$$
0.0000039 x=1000
$$

$$
x=256410256 \mathrm{~L}
$$

Approximately 256 million litres of seawater.

