Concentration

ppm

Concentration

artspper illion

parts per million (ppm):

Used when the amount of solute is extremely small (compared to the amount of solution)

$$
\left(\frac{\text { solute }}{\text { solution }}\right) \quad \frac{g}{1000000 g} \quad \text { or } \quad \frac{m g}{k g} \quad \text { or } \quad \frac{m g}{L}
$$

$$
C=5 \mathrm{ppm}=\frac{5 \mathrm{~g}}{1000000 \mathrm{~g}}
$$

$$
C=\frac{\text { amount of solute }}{\text { amount of solution }}
$$

$$
C=\frac{\text { amount of solute }}{\text { amount of solution }}
$$

$? \quad \quad m g=1 \mathrm{~kg}$
$1000 \mathrm{mg}=1 \mathrm{~g} \quad \& \quad 1000 \mathrm{~g}=1 \mathrm{~kg}$
$\frac{1000000}{(1 \text { million })} \quad m g=1 \mathrm{~kg}$
$1000 \mathrm{mg}=1 \mathrm{~g} \quad \& \quad 1000 \mathrm{~g}=1 \mathrm{~kg}$
parts per million (ppm):

$$
C=5 \mathrm{ppm}=\frac{5 \mathrm{mg}}{1 \mathrm{~kg}}
$$

What if the solution is a liquid and measured by volume?
Since water has a density of $1.0 \mathrm{~kg} / \mathrm{L}$:

$$
\begin{array}{r}
1 \mathrm{~kg} \text { of water }=1 \mathrm{~L} \text { of water } \\
1000000 \mathrm{mg} \text { of water }=1 \mathrm{~L} \text { of water }
\end{array}
$$

$$
C=5 \mathrm{ppm}=\frac{5 \mathrm{mg}}{1 \mathrm{~L}}
$$

1 L of Solution

Example I: 12 mg of solute in 3 kg of solution; $C=$?

$$
C=\frac{12 \mathrm{mg}}{3 \mathrm{~kg}}
$$

$$
C=\frac{\text { solute }}{\text { solution }}
$$

$C=4 \mathrm{ppm}$

$$
\frac{g}{1000000 \mathrm{~g}} \text { or } \frac{\mathrm{mg}}{\mathrm{~kg}} \text { or } \frac{m g}{L}
$$

Example II: 60 L of solution contains 42 mg of solute ; $C=$?

$$
\begin{aligned}
& C=\frac{42 \mathrm{mg}}{60 \mathrm{~L}} \\
& C=0.7 \mathrm{ppm}
\end{aligned}
$$

$$
\frac{g}{1000000 \mathrm{~g}} \text { or } \frac{\mathrm{mg}}{\mathrm{~kg}} \text { or } \frac{\mathrm{mg}}{L}
$$

Example III: 1.8 g of solute dissolved in 400 L of solution; $C=$?

$$
1.8 \mathrm{~g}=1800 \mathrm{mg}
$$

$$
C=\frac{\text { solute }}{\text { solution }}
$$

$$
C=\frac{1800 \mathrm{mg}}{400 \mathrm{~L}}
$$

$$
C=4.5 \mathrm{ppm}
$$

Example IV: Determine the quantity of solute found in 2.4 kg of solution that has a concentration of 3 ppm

$$
\begin{aligned}
\frac{3 \mathrm{mg}}{1 \mathrm{~kg}} & =\frac{x}{2.4 \mathrm{~kg}} \quad C=\frac{\text { solute }}{\text { solution }} \\
(1)(x) & =(3)(2.4) \\
x & =7.2 \mathrm{mg}
\end{aligned}
$$

Example V: Determine the quantity of solute found in 750 g of solution that has a concentration of 8 ppm

$$
\begin{aligned}
\frac{8 \mathrm{~g}}{1000000 \mathrm{~g}} & =\frac{x}{750 \mathrm{~g}} \quad \text { or } \\
000000)(x) & =(8)(750) \\
1000000 x & =6000 \\
x & =0.006 \mathrm{~g}
\end{aligned}
$$

Example V: Determine the quantity of solute found in 750 g of solution that has a concentration of 8 ppm

$$
\begin{array}{rlrl}
\text { that has a concentration of } 8 \mathrm{ppm} & 0.75 \mathrm{~kg} \text { of solution } \\
\frac{8 \mathrm{~g}}{1000000 \mathrm{~g}} & =\frac{x}{750 \mathrm{~g}} & \frac{8 \mathrm{mg}}{1 \mathrm{~kg}} & =\frac{x}{0.75 \mathrm{~kg}} \\
\left.\begin{array}{rlrl}
(1000000)(x) & =(8)(750) & \text { or } & (1)(x)
\end{array}\right)=(8)(0.75) \\
1000000 x & =6000 & x & =6 \mathrm{mg} \\
x & =0.006 \mathrm{~g} &
\end{array}
$$

Example VI: A concentration of 35 ppm is equivalent to what concentration in g / L ?

$$
35 \mathrm{mg}=\underline{0.035 \mathrm{~g}}
$$

$$
C=35 \mathrm{ppm}=\frac{35 \mathrm{mg}}{1 \mathrm{~L}}=\frac{0.035 \mathrm{~g}}{1 \mathrm{~L}}=0.035 \mathrm{~g} / \mathrm{L}
$$

That bench doesn't look very stable

