Chapter 1 Introduction

How can I be reached?

Knock on the door of B102

Email me: clifford.tam@rsb.qc.ca

My website: mistertam.weebly.com

Course breakdown

- Competency 1: Lab Mark Practical
 - 40 % of total grade
 - It consists of formal LAB REPORTS which will be taught to you.
 - You copy, I find out.
 - Science fair is also part of your lab mark
- Competency 2: Theory Mark Quizzes and Tests
 - 60 % of total grade
 - It consists of 3 quizzes and a summative exam at the end of the term.

How to behave in the lab

- Sensible clothing
- Closed toe shoes
- Snap a photo of the lab station BEFORE you start, making cleanup a real breeze
- Safety glasses or goggles MUST be worn at ALL TIMES
- Any violation of these rules will result possibility of revoked lab privileges.
- No foul play in the lab
- Lock down in CORNER
- Fire escape out the front door.

How to be successful in Chemistry

- Do ALL the work assigned (or as much as possible)
- No tardiness accepted. You will be asked to stand outside until you can come in without disturbing anyone
- Absenteeism will affect the outcome of your performance.
- Ask for help when you understand AND especially when you don't understand.
- Practice, practice and PRACTICE!
- If you run out of questions to practice, ASK FOR MORE! ©

Criteria for Graphing

- 1. x axis independent, y-axis dependent
- 2. Both Axis properly labelled with units
- 3. Title y(units) vs. x (units)
- 4. Data points circled indicates ever present experimental error
- 5. Best fit "line" straight line, curve etc.
- 6. Use as much of the graph paper as possible (minimum 50%)
- 7. Equally spaced increment on both axes
- 8. Points used to calculate the slope are indicated by ...
 - triangle to show the two points selected
 - Labeled "P₁" and "P₂"
- 9. Slope calculation (when requested)
 - before beginning calculations list the points, P₁ and P₂
 - include units
- 10. Use precision paper (provided by us)
- 11. When required use a key if more than one line is plotted on the same graph

Y (units) vs. X (units)

Independent variable (units)

m (g) vs. V (mL)

Error Calculations

Experimental Error (E)
Observed value (O)
Accepted value (A)

$$E = O - A$$

% error = $(E \div A) \times 100$

 $\rho_{\text{water @ 20 deg. C}} = 0.99823 \text{ g/mL} = A$

Precision and Accuracy

Accuracy: How close a measurement comes to the

actual or true value measured

Precision: Concerned with reproducibility of the measurement

Example:

Precision and Accuracy Lab

(Lab pg. 1-31 – Density of water)

Assignment to be collected (in 2 classes)

- Draw graph as per graphing criteria
- 2. Calculate:
 - Slope = $(Y_2 Y_1)/(X_2 X_1) \rightarrow \text{density} = (m_2 m_1)/(V_2 V_1)$
 - (indicate the selected points on your graph as P1 and P2)
- 3. Calculate:
 - Experimental (E)= observed value (O)— accepted value (A)
 - % error = <u>Observed Accepted</u> X 100 Accepted

Significant Figures in Measurements

- Include all the digits that can be known precisely plus a last digit that must be "estimated"
- The last digit is determined by the uncertainty of the instrument.
- The uncertainty of the instrument is determined by dividing the smallest division by 2

Ex.:

Smallest Division: 1mL

1mL÷2

Uncertainty: $= \pm 0.5 \text{mL}$

Reading: 33.5 ± 0.5 mL

Topic 11: Reading a Metric Ruler

Topic 13: Reading Thermometers

Topic 14: Reading Graduated Cylinders

54.0 + 0.5 mL

41.5 +_ 0.2 mL = 0.0415 +_ 0.0002 L

5.5 + 0.1 mL

Uncertainty of Instruments

Instrument/Size	Smallest Division (with units)	Uncertainty (smallest division/2)
250 mL graduated cylinder		± or ±
100 mL graduated cylinder		±
50 mL graduated cylinder		±
25 mL graduated cylinder		±
10 mL graduated cylinder		±
400 mL Beaker		±
Alcohol Thermometer		±
Digital Thermometer	X	± 0.1 °C
Electronic Balance	X	$\pm 0.001 \text{ g}$

Rounding off Numbers

Rule:

- 1. Last digit > 5, drop the last digit & round up
 i.e. 7.37 → 7.4
- 2. Last digit < 5, drop the last digit i.e. 7.34 → 7.3
- 3. Last digit = 5
 - (i) previous digit odd round up i.e. 5.35 rounded to one decimal —-> 5.4
 - (ii) previous digit even drop last digit i.e. 10.345 rounded to 2 decimals → 10.34

Scientific Notation

Exercises pg. 1-22

Significant Digits

- non-zeros
- ie. 421
- Zeros between non-zeros.
 - i.e. 4<u>0</u>6
- > Zeros to the <u>right</u> of a decimal point <u>after</u> significant digits
 - i.e. 45.1<u>00</u>)

Non - Significant Digits

- Stand alone zeros left of the decimal point i.e. <u>0</u>.421
- ►Zeros <u>right</u> of the decimal point <u>before</u> significant digits i.e. 0.<u>00</u>421
- ► Zeros after significant digits and before the decimal place i.e. 421<u>000</u> these three zeros **could** be significant

To eliminate doubt → write in scientific notation i.e 4.21 X 10⁵ (3 significant digits) 4.21000 X 10⁵ (6 significant digits)

Significant Digits Addition and Subtraction

(practice pg. 1-40)

- 1. Do the math
- 2. Round off to the least number of decimal places

Significant Digits Multiplication and Division

practice pg. 1-41

- 1. Do the math
- 2. # of significant digits same as number with the least #
- i.e. (561.1)(34731)(23) (112)(24.713) $= 161 \ 935.4382$ $= 1.6 \ X \ 10^5$

Periodic Table Review

Hyperlink to Periodic Table Review

Topic 16: Mole Problems

What is a mole?

Package of 6.02 X 10²³ particles (molecules or atoms)

What is molar mass?

- Mass of 1 mole of a substance.
- Sum of the atomic masses of the elements in a substance

<u>i.e.</u>

```
molar mass of: Ne = 20.18 g/mol

H_2O = [2 (1.01)+ 1(16.00)] = 18.02 g/mol
```

Changing between grams, moles and molecules

```
m = mass (g)

n = # of moles (mol)

MM = Molar Mass (g/mol)

N = Avogadro's number (6.02 X 10<sup>23</sup> particles/mol)
```

```
Using ratios:
```

MM = m/n

N = # particles/n

Changing between grams, moles and molecules

m = mass(g)

n = # of moles (mol)

MM = Molar Mass (g/mol)

N = Avogadro's number (6.02 X 10²³ particles/mol)

More on Significant Figures

Note the following:

- ➤ When <u>given</u> a value that can be measured with an instrument (i.e. mass) consider its significant figures.
- ➤ When **given** a value that cannot be measured with an instrument (i.e. # of moles or # or molecules) do not consider this values significant figures.
- When using a <u>calculated</u> value in another calculation consider its significant figures.