Chapter 1 Introduction

How can I be reached?

Knock on the door of B102
Email me: clifford.tam@rsb.qc.ca
My website: mistertam.weebly.com

Course breakdown

- Competency 1: Lab Mark - Practical
- 40 \% of total grade
- It consists of formal LAB REPORTS which will be taught to you.
- You copy, I find out.
- Science fair is also part of your lab mark
- Competency 2: Theory Mark - Quizzes and Tests
- 60% of total grade
- It consists of 3 quizzes and a summative exam at the end of the term.

How to behave in the lab

- Sensible clothing
- Closed toe shoes
- Snap a photo of the lab station BEFORE you start, making cleanup a real breeze
- Safety glasses or goggles MUST be worn at ALL TIMES
- Any violation of these rules will result possibility of revoked lab privileges.
- No foul play in the lab
- Lock down in CORNER
- Fire escape out the front door.

How to be successful in Chemistry

- Do ALL the work assigned (or as much as possible)
- No tardiness accepted. You will be asked to stand outside until you can come in without disturbing anyone
- Absenteeism will affect the outcome of your performance.
- Ask for help when you understand AND especially when you don't understand.
- Practice, practice and PRACTICE!
- If you run out of questions to practice, ASK FOR MORE! ()

Criteria for Graphing

1. x axis - independent, y-axis dependent
2. Both Axis properly labelled with units
3. Title y (units) vs. x (units)
4. Data points circled - indicates ever present experimental error
5. Best fit "line" - straight line, curve etc.
6. Use as much of the graph paper as possible (minimum 50\%)
7. Equally spaced increment on both axes
8. Points used to calculate the slope are indicated by ...

- triangle to show the two points selected
- Labeled "P ${ }_{1}$ " and " P_{2} "

9. Slope calculation (when requested)

- before beginning calculations list the points, P_{1} and P_{2}
- include units

10. Use precision paper (provided by us)
11. When required - use a key if more than one line is plotted on the same graph

Y (units) vs. X (units)

Dependent
Variable (units)

Independent variable (units)

m (g) vs. V (mL)

volume (mL)

Error Calculations

Experimental Error (E)
Observed value (O)
Accepted value (A)
$E=O-A$
$\%$ error $=(E \div A) X_{100}$
$\rho_{\text {water @ } 20 \text { deg. } \mathrm{C}}=0.99823 \mathrm{~g} / \mathrm{mL}=\mathrm{A}$

Precision and Accuracy

Accuracy: How close a measurement comes to the actual or true value measured

Precision: Concerned with reproducibility of the measurement

Example:

Precision and Accuracy Lab

(Lab pg. 1-31 - Density of water)

Assignment to be collected (in 2 classes)

1. Draw graph as per graphing criteria
2. Calculate:

- \quad Slope $=\left(Y_{2}-Y_{1}\right) /\left(X_{2}-X_{1}\right) \rightarrow$ density $=\left(m_{2}-m_{1}\right) /\left(V_{2}-V_{1}\right)$
- (indicate the selected points on your graph as P_{1} and P_{2})

3. Calculate:

- Experimental (E)= observed value (O)-accepted value (A)
- $\%$ error $=$ Observed - Accepted X 100

Accepted

Significant Figures in Measurements

- Include all the digits that can be known precisely plus a last digit that must be "estimated"
-The last digit is determined by the uncertainty of the instrument.
- The uncertainty of the instrument is determined by dividing the smallest division by 2

Smallest Division: 1 mL

$$
1 \mathrm{~mL} \div 2
$$

Uncertainty: $= \pm 0.5 \mathrm{~mL}$

Reading :

$$
33.5 \pm 0.5 \mathrm{~mL}
$$

Topic 11: Reading a Metric Ruler

$$
\begin{aligned}
& \text { How many: } \quad 1 .{ }^{18.25} \mathrm{~cm} \text { ? } \quad 2^{182.5} \mathrm{~mm} \text { ? } \quad 3^{0.1825} \mathrm{~m} \text { ? } \\
& \text { +_0.05 +_0.5 } \\
& 0.0005
\end{aligned}
$$

$$
\text { How many: } \quad 7 .{ }^{0.2030} \mathrm{~m} \text { ? } \quad 8 .{ }^{20.30} \mathrm{~cm} \text { ? } \quad 9.0002030 \text { km? }
$$

Topic 13: Reading Thermometers

$28.5^{+}+0.5^{\circ} \mathrm{C}$

$-2.0{ }^{+}+0.5^{\circ} \mathrm{C}$

$26.7^{+}-0.1^{\circ} \mathrm{C}$

Topic 14 : Reading Graduated Cylinders

$54.0{ }^{+} 0.5 \mathrm{~mL}$

41.5 + $_{-} 0.2 \mathrm{~mL}$
$=0.0415+0.0002 \mathrm{~L}$

$5.5^{+}-0.1 \mathrm{~mL}$

Uncertainty of Instruments

Instrument/Size	Smallest Division (with units)	Uncertainty (smallest division/2)
250 mL graduated cylinder		\pm
100 mL graduated cylinder \pm		
50 mL graduated cylinder		\pm
25 mL graduated cylinder		\pm
10 mL graduated cylinder		\pm
400 mL Beaker	X	\pm
Alcohol Thermometer	X	$\pm 0.1 \mathrm{o} \mathrm{C}$
Digital Thermometer		$\pm 0.001 \mathrm{~g}$
Electronic Balance	X	

Rounding off Numbers

Rule:

1. Last digit > 5, drop the last digit \& round up
i.e. $7.37 \rightarrow 7.4$
2. Last digit <5, drop the last digit
i.e. $7.34 \rightarrow 7.3$
3. Last digit = 5
(i) previous digit odd - round up
i.e. 5.35 rounded to one decimal --> 5.4
(ii) previous digit even - drop last digit i.e. 10.345 rounded to 2 decimals $\rightarrow 10.34$

Scientific Notation

Exercises pg. 1-22

Significant Digits

$>$ non-zeros
ie. 421
Zeros between non-zeros i.e. 406
$>$ Zeros to the right of a decimal point after significant digits i.e. 45.100)

Non - Significant Digits

\Rightarrow Stand alone zeros left of the decimal point i.e. $\underline{0} 421$

- Zeros right of the decimal point before significant digits i.e. 0.00421
- Zeros after significant digits and before the decimal place i.e. $421 \underline{000}$ these three zeros could be significant

To eliminate doubt \rightarrow write in scientific notation

$$
\begin{array}{lcc}
\text { i.e } & 4.21 \times 10^{5} & (3 \text { significant digits) } \\
4.21000 \times 10^{5} & \text { (6 significant digits) }
\end{array}
$$

Significant Digits

Addition and Subtraction

(practice pg. 1-40)

1. Do the math
2. Round off to the least number of decimal places

$$
\begin{gathered}
\text { i.e. } 2.1745 \\
134.2 \\
56.17 \\
18.193 \\
210.7375
\end{gathered}
$$

Significant Digits Multiplication and Division
 practice pg. 1-41

1. Do the math
2. \# of significant digits - same as number with the least \#
i.e. (561.1)(34731)(23)
(112)(24.713)
= 161935.40822
$=1.6 \times 10^{5}$

Periodic Table Review
 Hyperlink to Periodic Table Review

Topic 16: Mole Problems

What is a mole?

$>$ Package of 6.02×10^{23} particles (molecules or atoms)

What is molar mass?

$>$ Mass of 1 mole of a substance.
$>$ Sum of the atomic masses of the elements in a substance
i.e.
molar mass of: $\mathrm{Ne}=20.18 \mathrm{~g} /$

$$
\mathrm{H}_{2} \mathrm{O}=[2(1.01)+1(16.00)]=18.02 \mathrm{~g} / \mathrm{mol}
$$

Changing between grams, moles and molecules

$$
\begin{aligned}
& m=\text { mass }(\mathrm{g}) \\
& n=\# \text { of moles }(\mathrm{mol}) \\
& M M=\text { Molar Mass }(\mathrm{g} / \mathrm{mol}) \\
& N=\text { Avogadro's number }\left(6.02 \times 10^{23} \text { particles } / \mathrm{mol}\right) \\
& \text { Using ratios: } \\
& M M=m / n \\
& N=\# \text { particles } / \mathrm{n}
\end{aligned}
$$

Changing between grams, moles and molecules

$$
\begin{aligned}
& m=\operatorname{mass}(\mathrm{g}) \\
& n=\# \text { of moles }(\mathrm{mol})
\end{aligned}
$$

MM = Molar Mass ($\mathrm{g} / \mathrm{mol}$)
$\mathrm{N}=$ Avogadro's number (6.02×10^{23} particles $/ \mathrm{mol}$)

More on Significant Figures

Note the following:
$>$ When given a value that can be measured with an instrument (i.e. mass) consider its significant figures.
$>$ When given a value that cannot be measured with an instrument (i.e. \# of moles or \# or molecules) do not consider this values significant figures.
$>$ When using a calculated value in another calculation consider its significant figures.

