

Chemical Equations - Balanced ? ... or Not ?

Consider the following chemical reaction:

Carbon + Oxygen \rightarrow Carbon dioxide

Chemical Equations - Balanced ? ... or Not ?

Chemical Equations - Balanced ? ... or Not ?

Since the atoms in the reactants match the atoms in the product, the chemical equation is said to be **balanced**.

Consider the following chemical reaction:

1) When carbon, C, reacts with chlorine, Cl_2 , it produces carbon tetrachloride, CCl_4 .

Carbon + Chlorine

Carbon tetrachloride

1) When carbon, C, reacts with chlorine, Cl_2 , it produces carbon tetrachloride, CCl_4 .

(Molecular formulas only; not balanced)

Na + $Cl_2 \rightarrow NaCl_2$ Can we just put a 2 here ?

Na +
$$Cl_2 \rightarrow NaCl_2$$

NO, since this changes the molecular formula ... and the question.

Besides which, $NaCl_2$ does not exist as a compound

\square Na + \square Cl₂ \rightarrow \square NaCl

When balancing a chemical equation you are only allowed to change the number of each molecule (putting numbers in front), not by changing the molecular formula itself.

\square Na + \square Cl₂ \rightarrow \square NaCl

When balancing a chemical equation you are only allowed to change the number of each molecule (putting numbers in front), not by changing the molecular formula itself.

Writing a Balanced Chemical Equation

Example: When caesium, Cs, reacts with nitrogen gas, N₂, a compound called caesium nitride, Cs₃N, is produced.

Writing a Balanced Chemical Equation

Example: When caesium, Cs, reacts with nitrogen gas, N₂, a compound called caesium nitride, Cs₃N, is produced.

