pH scale

power of Hydrogen
pH
pH

Scale used to measure the concentration of hydrogen ions, H^{+}, in a solution.

Scale used to measure the concentration of hydrogen ions, H^{+}, in a solution.

Scale generally runs from 0-14
pH
$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Scale generally runs from 0-14

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

In pure water a few of the water, $\mathrm{H}_{2} \mathrm{O}$, molecules will split up into hydrogen, H^{+}, and hydroxide, OH^{-}, ions.
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

In pure water the number of H^{+}and OH^{-}ions are equal. H^{+}and OH^{-}are balanced.

This corresponds to a pH of 7 .
pH $7=$ Neutral
H^{+}
OH^{-}
OH^{-}

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$

If an acid is added to the water, the quantity of H^{+}will increase.

Acids release H^{+}

more H^{+}
pH value drops

Acids

pH

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

If an acid is added to the water, the quantity of H^{+}will increase.

Acids release H^{+}

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 14\end{array}$

* The stronger the acid, the lower the pH.
- An acid with $\mathrm{pH}=5$ is 10 X stronger than $\mathrm{pH}=6$
- An acid with $\mathrm{pH}=3$ is 10 X stronger than $\mathrm{pH}=4$
- An acid with $\mathrm{pH}=2$ is 100 X stronger than $\mathrm{pH}=4$

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$

If a base is added to the water, the quantity of OH^{-}will increase.

Bases release OH^{-}

less H^{+}
pH value rises

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

If a base is added to the water, the quantity of OH^{-}will increase.

Bases release OH^{-}

* The stronger the base, the higher the pH .

$\begin{array}{lllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Dissolving a salt in the water (normally) does not affect the balance between \mathbf{H}^{+}and $\mathbf{O H}^{-}$ions.

Saline (salt) solutions are usually neutral: $\mathrm{pH}=7$

Mathematics behind the pH scale
Exponents and Logarithms

$$
\begin{array}{rlrl}
10^{3} & =1000 & 10^{?} & =1000000 \\
10^{-3} & =0.001 & ? & =\log (1000000) \\
10^{-5} & =0.00001 & ? & =6 \\
10^{2.5} & \approx 316.2278 & &
\end{array}
$$

Mathematics behind the pH scale
Exponents and Logarithms

$$
\begin{aligned}
10^{3} & =1000 \\
10^{-3} & =0.001 \\
10^{-5} & =0.00001 \\
10^{2.5} & \approx 316.2278
\end{aligned}
$$

$$
\begin{aligned}
10^{?} & =0.0000001 \\
? & =\log (0.0000001) \\
? & =-7
\end{aligned}
$$

Mathematics behind the pH scale
Exponents and Logarithms

$$
\begin{aligned}
10^{3} & =1000 \\
10^{-3} & =0.001 \\
10^{-5} & =0.00001 \\
10^{2.5} & \approx 316.2278
\end{aligned}
$$

$$
\begin{aligned}
10^{?} & =5000 \\
? & =\log (5000) \\
? & \approx 3.699
\end{aligned}
$$

Mathematics behind the pH scale

Concentration of hydrogen ions measured in moles per litre ($\mathrm{mol} / \mathrm{L}$)
(a.k.a. molar concentration)

Pure water (Neutral):

$$
10 \times \text { more } \mathrm{H}^{+}: \quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}
$$

A really small amount of H^{+}:

$$
\left[\mathrm{H}^{+}\right]=1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}
$$

$$
(0.0000001 \mathrm{~mol} / \mathrm{L})
$$

$$
(0.000001 \mathrm{~mol} / \mathrm{L})
$$

$$
\left[H^{+}\right]=1 \times 10^{-13} \mathrm{~mol} / \mathrm{L}
$$

$$
(0.0000000000001 \mathrm{~mol} / \mathrm{L})
$$

$$
\mathrm{pH}=-\log \left[H^{+}\right]
$$

$\mathrm{pH}=7$
$\mathrm{pH}=6$
$\mathrm{pH}=13$

pH of Common Substances

